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1 Introduction

Here we present a selection of some open questions related to the hypergraph
Turán problem.

Let [n] denote the interval {1, . . . , n}. For a set X and an integer k, let(
X
k

)
= {Y ⊆ X : |Y | = k} be the family of all k-subsets of X. By a k-graph

F we understand a k-uniform set system, that is, F is a pair (V,E) where V
is the set of vertices and E ⊆

(
V
k

)
. For convenience, we will identify k-graphs

with their edge set. Thus e.g. |F | = |E(F )| denotes the size of F .
Let F be a family of k-graphs. A k-graph G is F-free if G does not contain

any member of F as a (not necessarily induced) subgraph. The Turán function
is

ex(n,F) = max{|G| : G ⊆
(
[n]
k

)
, G is F-free}.

It goes back to the fundamental paper of Turán [Tur41]. The Turán density is

π(F) = lim
n→∞

ex(n,F)(
n
k

) ;

it not hard to show that the limit exists. If F = {F}, then we abbreviate
ex(n, {F}) to ex(n, F ), etc.

We refer the reader to the surveys by Füredi [Für91], Sidorenko [Sid95], and
Keevash [Kee11].

2 Open Questions

2.1 Complete Hypergraphs

Let Kk
m =

(
[m]
k

)
be the complete k-graph on m vertices. Erdős offered a money

prize for determining π(Kk
m) for at least one pair k,m with m > k ≥ 3; the

highest money value of the prize we found in the literature is $3000 (Frankl and
Füredi [FF84, Page 323]). It is still unclaimed.

Conjecture 1 (Turán [Tur41]) π(K3
4 ) = 5

9 .
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There are many different constructions that achieve the lower bound (see
Brown [Bro83], Kostochka [Kos82], and Fon-der-Flaass [FdF88]), which is one
of the reasons why this problem is so difficult. Successively better upper bounds
were proved by de Caen [dC88], Giraud (see [CL01]), and Chung and Lu [CL01].
Razborov’s [Raz10a] flag algebra approach suggests that π(K3

4 ) ≤ 0.561... (and,
if needed, this can be converted into a rigorous proof).

Fon-der-Flaass [FdF88] presented a construction of K3
4 -free graphs from di-

graphs. A weakening of Conjecture 1 is that Fon-der-Flaass’ construction cannot
beat 5

9 ; some progress in this direction was made by Razborov [Raz10b].
Kalai [Kal85] (see also [Kee11, Section 11]) presented an interesting approach

to π(K3
4 ).

Conjecture 2 (Turán) π(K3
m) = 1−

(
2

m−1

)2
.

A construction that achieves the lower bound can be found in [Sid95, Sec-
tion 7]. Mubayi and Keevash (see [Kee11, Section 9]) found a different construc-
tion (via digraphs).

Let us mention here another very interesting question for whose solution de
Caen [dC94, Page 190] offered 500 Canadian dollars.

Conjecture 3 Does k(1− π(Kk
k+1)) tend to ∞ as k →∞?

We know that 1 ≤ k(1 − π(Kk
k+1)) ≤ ( 1

2 + o(1)) ln k (see also Lu and
Zhao [LZ09]).

Finally, we refer the reader to the survey by Sidorenko [Sid95] that discusses
π(Kk

m) for some other k,m.

2.2 K3
4 Minus an Edge

Let K−4 be obtained from K3
4 by removing one edge.

Conjecture 4 (Mubayi [Mub03]) π(K−4 ) = 2
7 .

The lower bound come by partitioning [n] into six parts, taking certain 10
complete 3-partite 3-graphs, and then recursively repeating the same construc-
tion inside each part, see [FF84, Page 323].

The best known upper bounds come from flag algebra computations: Baber
and Talbot [BT10] (by using the method of Razborov [Raz10a] and generating
a larger SDP program than that in [Raz10a]) showed that π(K−4 ) ≤ 0.2871.

2.3 Turán Function for Books

Let the book Bk,m consist of m edges sharing k − 1 common points plus one
more edge that contains the remaining m points and is disjoint otherwise. Let
us exclude the case m ≤ 1 when π(Bk,m) = 0. The hypergraph problems for
books turned out (relatively) more tractable. We know ex(n,Bk,m) exactly for
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all large n, when 2 ≤ m ≤ k ≤ 4, see [Bol74, FF83, FPS03, KM04, FPS05,
FPS06, FMP08, Pik08].

Also, Frankl and Füredi [FF89] determined π(Bk,2) for k = 5, 6; in both
cases the lower bounds comes by blowing up a small design. The following
question is still open (see Frankl and Füredi [FF89, Conjecture 1.5]):

Problem 5 Determine ex(n,B5,2) and ex(n,B6,2) exactly for all large n.

One difficulty in proving Problem 5 is that it is not clear how to prove the
stability property, that is, that all almost extremal graphs have similar structure.

Conjecture 6 ([FMP08, BFMP10])

π(B5,5) =
40

81
,

π(B6,6) =
1

2
.

The lower bounds come from a “bipartite” construction. It was proved in
[BFMP10] that π(B5,5) ≤ 0.534... and that the bipartite construction is not
optimal for π(Bk,k) when k ≥ 7.

The Turán density is unknown for B5,3 and B5,4 which is an interesting (and
perhaps tractable) open problem.

2.4 Tight 5-Cycle

Mubayi and Rödl [MR02] have given bounds on π(C3
5 ), where C3

5 is the tight
3-graph 5-cycle:

C3
5 = {123, 234, 345, 451, 512}.

In particular, the lower bound π(C3
5 ) ≥ 2

√
3 − 3 comes from the following

construction: partition the vertex set into two parts A and B, take all triples
that intersect A precisely in 2 vertices, and recursively repeat this construction
within B. Finding the optimal ratio between |A| and |B| gives the required.
Razborov’s [Raz10a] flag algebra computations showed that π(C3

5 ) < 0.4683
(note that 2

√
3− 3 = 0.4641...). This makes the following conjecture plausible.

Conjecture 7 π(C3
5 ) = 2

√
3− 3.

2.5 Tight 5-Cycle Minus an Edge

Let the 3-graph C−5 be obtained from C3
5 by removing one edge. An example

of a C−5 -free 3-graph can be obtained by taking a complete 3-partite 3-graph
and repeating this construction recursively within each of the three parts. This
gives density 1/4 in the limit.

Conjecture 8 π(C−5 ) = 1/4.
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2.6 Ruzsa-Szemerédi Theorem and Relatives

Let fr(n, s, p) be the largest size of an r-graph G on n vertices such that no
set of s vertices spans at least p edges. For example, the celebrated theorem of
Ruzsa and Szemerédi [RS78] states that f3(n, 6, 3) = o(n2).

Conjecture 9 (Erdős, Frankl, and Rödl [EFR86]) For any r ≥ 3 and s ≥
4 we have

fr(n, s(r − 2) + 3, s) = o(n2).

In [SS05] it is proved that fr(n, s(r − 2) + blog2 sc, s) = o(n2). The first
remaining open case is to prove the conjecture for f3(n, 7, 4) (probably very
hard).

One possible direction here is to look at multiple hypergraphs (when the
same r-tuple can appear a multiple number of times) and ask for F r(n, p, s)
maximum size of an r-multi-hypergraph such that every s-set spans at most p
edges. See Füredi and Kündgen [FK02] for results in the graph case (r = 2).

A related question is as follows. Let A, B, and C be disjoint sets each of size
n. Let M1, . . . ,Ml, be matchings, where each edge of Mi has one point in each
of A, B, and C. The forbidden configuration is: three edges abc, a′b′c′, a′′b′′c′′

all in some Mi and one edge of the form ab′c′′ in some other Mj (that is, the
edge from Mj crosses the three edges of Mi). Additionally, we require that the
union of all matchings Mi makes a simple (linear) 3-graph, call it M .

Conjecture 10 (Frankl-Rödl (see [ENR90])

|M | = o(n2).

If true, this implies Roth’s Theorem (every set of integers of positive upper
density has a 3-term arithmetic progression). An obvious generalization is to
consider the k-graph version where we have parts A1, ..., Ak, each of size n, and
instead of three edges in Mi we take k edges in Mi and another crossing edge as
the forbidden configuration; as before, we require that the union M is a linear
k-graph. Again, we believe that |M | = o(n2) and, if true, this would imply
Szemerédi’s Theorem. The case k = 2 is equivalent to the Ruzsa–Szemerédi
Theorem that f3(n, 6, 3) = o(n2).

The following conjecture seems to be related.

Conjecture 11 (Solymosi, Oberwolfach 2011) Let F be a graph and α > 1
be such that ex(n, F ) = Ω(nα). Then for any ε > 0 there is n0 so that if n > n0
and a graph H is the edge-disjoint union of m = dεnαe copies of F , then H
contains another copy of F (i.e. has at least m+ 1 copies of F ).

The Removal Lemma implies that this is true when F is not bipartite.
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2.7 Beyond the Turán Threshold

Erdős [Erd94] (see also [CG98, Page 93]) conjectured that for any k ≥ 4 every
3-graph G with n vertices and ex(n,K3

k)+1 edges contains at least two copies of
K3
k . Even more strongly: it was conjectured that G must contain K3

k+1 minus
one edge.

Another interesting question is to estimate the number of copies of F that
any k-graph G ⊆

(
[n]
k

)
with ex(n, F ) + q edges must have. Some partial results

(for those F for which we know ex(n, F )) were obtained by Mubayi [Mub].

2.8 Tic-tac-toe Turán-type problem of Elekes

Let tic-tac-toe T be the 3-graph of order 9 and size 6 where the edges correspond
to the rows and columns of the 3× 3-tic-tac-tow board.

Elekes [Col99, Problem 4] asked the following problem.

Problem 12 Dis/prove that the maximum size of F ⊂
(
[n]
3

)
not containing T

nor two edges intersecting in two points is o(n2).

2.9 Bipartite Links

Given a k-graph G and a vertex x, its link

Gx = {Y : Y 63 x, Y ∪ {x} ∈ G}

is the collection of (k − 1)-sets that together with x form edges of G. The
following conjecture is attributed to Erdős and Sós in [FF84, Page 238].

Conjecture 13 If every link of G ⊆
(
[n]
3

)
is bipartite, then |G| ≤ ( 1

4 +o(1))
(
n
3

)
.

Here are some possible constructions. Take a random tournament of order
n and take all those triples which span directed 3-cycle. Now, let x be any
vertex. The partitionNout(x)∪Nin(x) is the required bipartition ofGx. Another
construction that achieves 1/4 is to take a complete 3-partite 3-graph and repeat
this construction recursively inside each part. Yet another construction is to
place all n points equally around a circle and let three points to form an edge
if the triangle spanned by them contains the center of the circle.

Clearly, Conjecture 13 can be rephrased as the Turán question for the obvious
(infinite) family B. By looking at two specific members of B, namely, K−4 and
C3

5 (defined above), Razborov [Raz10a] obtained 0.266 as an upper bound.

Problem 14 (Füredi, Oberwolfach 2004) What happens if we require that
χ(Gx) ≤ k for any vertex x?
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2.10 Worst Graphs of Given Size

Sidorenko [Sid89] (see [Kee11, Section 6]) proved that for every k-graph F with
f edges we have π(F ) ≤ f−2

f−1 . This gives 1/2 if f = 3. If k is even, this is best

possible, see [Fra90, KS05].

Problem 15 Given odd k ≥ 3, determine/estimate the smallest γ = γ(k) such
that π(F ) ≤ γ for every k-graph with 3 edges.

For k = 3, we know that the answer is given by F = K−4 but we do not
know π(K−4 ) exactly. Perhaps, one may be able to describe all extremal graphs
for γ(k) without knowing its value. It is still open if γ(5) < 1/2, see [Kee11,
Section 6].

2.11 Maximizing Lagrangian

The Lagrangian ΛG of a k-graph G ⊆
(
[n]
k

)
is the maximum of

λG(x1, . . . , xn) =
∑
D∈G

∏
i∈D

xi,

over all non-negative xi ≥ 0 with sum 1.

Conjecture 16 (Frankl and Füredi [FF89]) or given k and m = |G|, the
maximum of ΛG is attained by the initial colex segment.

See Talbot [Tal02] for a partial progress in this direction. If the conjecture
is true, this would greatly simplify the proof in [FF89] and might have other
interesting consequences.

2.12 Ramsey-Turán Problems

For a k-graph F , the Ramsey-Turán function RT (n, F, l) is the maximum size

of an F -free k-graph G ⊆
(
[n]
k

)
with independence number less than l (that is,

every l-set spans at least one edge in G).
Various ranges of l lead to meaningful and interesting questions. A good

starting point is the paper by Erdős and Sós [ES82] that contains a number of
open Ramsey-Turán problems for hypergraphs.

The following two problems from [SS01] are also interesting.

Problem 17 Find a function f(n)→∞, “not too small”, for which

RT (n,K3
4 , f(n)) = o(n3).

Problem 18 Is it true that for any r-graph H there is a threshold, that is,
f(n) such that

RT (n,H, g(n)) =

{
o(n3), if g(n)/f(n)→ 0,
Θ(n3), if g(n)/f(n)→∞.
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Here a rare example of a Turán-type problem where the hypergraph case
has been solved but which is still open for graphs. For a k-graph family F ,
let the Ramsey-Turán density ρ(F) be the supremum over all functions f such
that f(n) = o(n) of RT (n,F , f(n))/

(
n
k

)
. It was shown in [MP08] that for every

k ≥ 3 there are two k-graphs F and G such that

ρ({F,G}) < min(ρ(F ), ρ(G)). (1)

The question whether there are two graphs satisfying (1) is still open [MP08,
Problem 1]. For the Turán density, the analogous questions have been re-
solved ([Bal02, MP08]).

2.13 Co-Degree Density of Hypergraphs

The following problem was first systematically studied by Mubayi and Zhao [MZ07].
The codegree C(G) of a k-graph G is the minimum size of the link set

GA = {x ∈ V (G) \A : A ∪ {x} ∈ G}

over (k − 1)-sets A ⊆ V (G). For a family F of forbidden k-graphs, co-ex(n,F)
be the largest codegree in an F-free k-graph on n vertices. Let

γ(F) = lim
n→∞

co-ex(n,F)

n
.

(It is shown in [MZ07] that the limit exists.)
Czygrinow and Nagle [CN01] conjectured that γ(K3

4 ) = 1
2 (see [MZ07] for a

few other related questions).
Mubayi and Zhao showed that the numbers γ(F) are dense in [0, 1).

Problem 19 (Mubayi and Zhao [MZ07]) Characterize all possible values
of γ(F) for (possibly infinite) F . Can every real α ∈ (0, 1) be realized?

Similar questions can be asked about the l-th codegree Cl(G), the minimum
size of the link (k − l)-graph GL over all l-sets L.

2.14 Weakly Triangle-Free Hypergraphs

Bollobás [Bol74] conjectured that the maximum size of a triangle-free k-graph
of order n is achieved for the complete k-partite hypergraph. Shearer [She96]
showed that this conjecture is false in general.

Call a hypergraph G weakly triangle-free if no edge contains strictly more
than half of vertices from the symmetric difference of two edges. Mubayi and
Pikhurko (unpublished) asked the following.

Problem 20 Is it true that the maximum size of a weakly triangle-free k-graph
on n vertices is attained for k-partite graph?
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2.15 Expanded K4

To define the 2k-graph K2k
4 take four disjoint k-sets A1, . . . , A4 and let Ai ∪Aj

be edges. Thus we have 4k vertices and 6 edges. Let us call it expanded K4.
Frankl [Fra90] showed that the Turán density π(K2k

4 ) ≤ 2/3. Keevash and
Sudakov [KS05] showed that it is at most 2/3− ε for some ε > 0.

Problem 21 Determine the value of π(K2k
4 ).

Keevash [Kee11, Section 8] presents a new construction that shows π(K4
4 ) ≥

9/14.

2.16 Hypergraphs Without Generalized 4-Cycle

Erdős [Erd77] stated the following problem. Determine fr(n), the maximum
number of edges in r-graph on n vertices that does not contain four edges
A,B,C,D with A ∪B = C ∪D and A ∩B = C ∩D = ∅.

Füredi [Für84] proved that(
n− 1

r − 1

)
+

⌊
n− 1

r

⌋
≤ fr(n) <

7

2

(
n

r − 1

)
. (2)

Even the case r = 3 is open. Improving on the previous upper bounds of
Mubayi and Verstraëte [MV04], Pikhurko and Verstraëte [PV09] showed that
that f3(n) ≤ 13

9

(
n
2

)
.

Problem 22 Improve on these bounds.

2.17 Turán Function of Tight Cycles

The tight 3-uniform cycle C3
t is a 3-graph on t vertices v1, . . . , vt whose edges

are v1v2v3, v2v3v4, . . . , vtv1v2. Let t be divisible by 3.

Problem 23 (Conlon (unpublished)) Is it true that there is a constant c
such that if a 3-uniform hypergraph on n vertices has n2+c/t edges then it con-
tains a copy of C3

t ?

If the answer is in the affirmative, this would imply better upper bounds on
the size of a subgraph of the n-hypercube Qn without a C4i+2-cycle for all large
fixed i, see Conlon [Con10]. Here, the hypercube graph Qn has 2[n] = {X : X ⊆
[n]} as the vertex set where two vertices (subsets of [n]) are adjacent if their
symmetric difference consists of 1 element only.

2.18 Subsets in Hypercubes

Johnson and Talbot [JT10, Question 13] asked if for any d and ε > 0 there
is n0 such that if A is a vertex subset of the hypercube Qn with n ≥ 0 and
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|A| ≥ ε2n then we can fund a d-dimensional subcube that contains at least(
d
bd/2c

)
elements from A.

Independently, Bollobás and Leader [BL] and Bukh (personal communica-
tion) observed that this is equivalent to the following hypergraph Turán prob-
lem. For r ≥ s > t let the r-graph SrKt

s have vertex set V = [s + t − r] and
edge set

{D ∈
(
V
r

)
: D ⊇ [r − t]}.

(Thus if we remove [r − t] from every edge, we get a copy of Kt
s.) Then the

following question is equivalent to that of Johnson and Talbot.

Problem 24 Is it true that for any s > t ≥ 2 we have limr→∞ π(SrKt
s) = 0?

Even the case s = 4 and t = 2 is currently open.
Finally, there are some interesting open questions (some very old) that may

be also related to the hypergraph Turán problem, where one asks about the
maximum size of a vertex/edge set in the hypercube Qn without inducing a copy
of Qd. The recent paper [JT10] gives some references and is a good starting
point for learning more about these questions.

3 Further Open Questions

Here are some of the questions that came up during the AIM Workshop March
21–25, 2011. One of the objectives of the workshop was to find new approaches
and points of view on the hypergraph Turán problem, so some of these questions
may be rather easy (or even not well-defined).

1. (Vera Sós.) Let C consist of all tight 3-graph cycles. Estimate ex(n, C). A
star shows that ex(n, C) ≥

(
n−1
2

)
.

2. (Jacob Fox.) Does there exist a single r-graph F such that π(F ) is tran-
scendental? What about families of forbidden hypergraphs (finite or infi-
nite)?

3. (Benny Sudakov.) Let H be an n-vertex 3-uniform hypergraph. A simple
probabilistic argument shows that α(H) = Ω( n√

d
), where d is average

degree. Erdős [Erd81, Page 52] asked if this can be improved if we require
that H does not contain K3

4 . Duke, Rödl, and Lefmann [DLR95] (see also
Ajtai et al [AKP+82]) showed that if H does not have two edges sharing
a pair (i.e. K3

4 minus two edges), then the conjecture is true.

4. (De Caen [dC94].) A 3-graph H is c-sparse if every set S of vertices spans
at most c|S|2 edges. Prove that for every c there is f(n)→∞ as n→∞
such that α(H) ≥ f(n)

√
n for each c-sparse n-vertex 3-graph H. Mubayi

asked if α(H)� n√
d

for an O(1)-sparse H with average degree d.

5. (Oleg Pikhurko.) Find α < β < 1 such that α is a non-jump but β is a
jump for 3-graphs.
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6. (Linyuan Lu and László Székely.) Is it true that π(H) ≤ 1− 1
d+1 for any

r-graph H such that each edge intersects at most d other edges. Lu and
Székely can prove that π(H) ≤ 1 − 1

e(d+1) , using the Local Lemma. The

intuition here is that the complete graph should be the worst.

Sidorenko [Sid89] showed that for π(H) ≤ f−1
f−2 , where f is the number of

edges. Keevash [Kee05] improved this when r � f .

7. (Jacob Fox and Benny Sudakov.) Let Pr(n, ε, d) be the smallest L such
that every r-graph G on n vertices has an edge partition E0∪ . . .∪El such
that l ≤ L, |E0| ≤ εnr while for every x, y ∈ V (G) and every i ∈ [l] there
is a tight path between x and y in Ei. This can viewed as partitioning an
r-graph into “small worlds.” Conjecture: for fixed ε > 0 there is cr such
that for every n we have Pr(n, ε, 3) ≤ crε−r. Fox and Sudakov [FS10] gave
a construction which shows that this is tight. They can prove Pr(n, ε, d) ≤
crε
−2r .

This is related to a Turán problem. Let H be the following r-graph. The
vertex set V (H) = U ∪W where U = {u1, . . . , ur} and W = {w1, . . . , wr}
are disjoint. The edge set consists of U , W , and W \ {wi} ∪ {ui} for
i ∈ [r]. (Thus e(H) = r + 2.) Also, H has diameter 3 and H is r-partite.
Question: estimate limsup/liminf of log ex(n,H)/ log n.

Note: H is contained in the complete r-partite hypergraph with parts of

size 2. So by Erdős [Erd64], nr−
1

2r−1 edges are enough to find the complete
r-partite hypergraph. Fox and Sudakov think that the exponent should
be r − Ω( 1

r ).

8. (Miklós Simonovits.) Is it true that ex(n,K3
2,2,2) = Ω(n11/4)? The best

known upper bound is O(n11/4), due to Erdos [Erd64]. Katz, Krop, and
Maggioni [KKM02] proved Ω(n8/3) as a lower bound, see also Gunderson,
Rödl and Sidorenko [GRS99]. Mubayi [Mub02, Conjecture 1.4] conjec-
tured that for r > 1 and s1 ≤ · · · ≤ sr

ex(n,Kr(s1, . . . , sr)) = Θ(nr−1/s),

where s =
∏r−1
i=1 si.

9. (József Balogh.) The chromatic threshold of F is the infimum of all d such
that for all large n, every n-vertex F -free 3-graph with minimum degree
≥ d

(
n
2

)
has bounded chromatic number. See Balogh et al [BBH+11] for

more details.

Let the 3-graph F 3
5 have vertices a, b, c, d, e and edges {a, b, c}, {b, c, d},

and {d, e, a}. What is the chromatic threshold for F 3
5 ? Conjecture: it is

6
49 .

10. (Mathias Schacht.) Let F be a 3-graph. Let π̃(F ) be the infimum over
all d such that for every ε > 0 there is δ > 0 and n0 such that for every
F -free 3-graph H with n ≥ n0 vertices there is U ⊆ V (H) with |U | ≥ δn
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and the density of H[U ] being at most d + ε. This differs from the usual
Turán function in that now every linear size subset is not too sparse.

See eg Rödl [Röd86, Page 133] for a construction that π̃(K3
4 ) ≥ 1/2. Is

this tight?

Question: Are there any non-jumps (appropriately defined)?

Question: Is π̃(K3
4 minus an edge) = 1

4?

Question: For which 3-graphs F is π̃(F ) = 0? It is known to be 0 all
simple hypergraphs and, of course, for all 3-partite hypergraphs. Also,
it is 0 for all blow-ups of simple hypergraphs. Are there any other cases
when it is 0?

For a related version with fewer parameters (easier to state), one can
eliminate δ and instead consider those U with |U | ≥ n

logn .

11. (Miklós Simonovits.) Let F be a family of graphs. For large n, we max-
imize the edge density of a graph Gn such that |Gn| = n, Gn is F-free,
and α(Gn) = o(n). Is it true that for any F , there is a constant R such
that there is an asymptotically extremal graph Gn admitting a partition
V (G) = V1 ∪ . . . ∪ Vr such that r ≤ R and the density between any two
classes d(Vi, Vj), 1 ≤ i ≤ j ≤ r, is o(1), 1 + o(1), or 1

2 + o(1)?

12. (John Goldwasser.) What is the Turán density for F 3
1,r, the 3-graph which

is a star? Its vertices are {v0, v1, . . . , vr}. Edges are all {v0, vi, vj}, with
1 ≤ i < j ≤ r.
If we take the complement of the Fano place and blow it up, it is F1,4-free
(since each link graph is 3-partite). We can repeat this recursively within
each of the 7 parts, getting in limit edge density 1/2.

If r = 5, one can base a construction on the projective plane of order 3,
which has 13 points and 13 lines. Take all triples that are not collinear,
blow this up, and do recursion inside each of the 13 parts.

Similar works whenever we have a projective plane. Goldwasser conjec-
tures that these contructions (when a projective plane exists) give the
exact value of π(F1,r).

13. (Fan Chung.) Let r, n and e be given. Find the maximum size of an
r-graph which is contained in every r-graph on n vertices and e edges.
This is still open in general; the cases r = 2, 3 are studied in Chung and
Erdős [CE83, CE87].

14. (József Solymosi.) Let E(F ) = {abc, cde, acg, cfh, ghi, bej} and E(H) =
{abc, cde, acg, cfh, ghi, bei}. (Thus H is obtained from F by identifying
vertices i and j.) Prove that every simple n-vertex 3-graph without F or
H has o(n2) edges. This is related to (7, 4)-problem and, if true, would
have interesting applications.
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15. (Dhruv Mubayi and Jacques Verstraëte.) What is the maximum number
of edges in n-vertex r-graph if it has no 2-regular subgraph? If r is even,
one can take all r-tuples containing some vertex point. This was shown
to be optimal for all large n in [MV09].

If r is odd, one improve the above construction by adding a matching
disjoint from the special vertex. It is conjectured in [MV09, Conjecture 1]
that

(
n−1
r−1
)

+ bn−1r c is best possible for all large n.

16. (David Conlon.) Embed K2n in Rn so that its vertices make the n-cube.
Ramsey’s theorem implies that if we color all edges red/blue, then there
is a planar monochromatic K4 (that is, its 4 vertices lie in one plane).

An open question is to determine the maximum size of a subgraph of
K2n without a planar K4. The trivial lower bound is 2

3 + o(1) (just take
a K4-free subgraph). If it is is sharp, then this problem is probably of
comparable difficulty to the Density Hales Jewett Theorem.

One can also ask for a planar triangle plus 1 pendant edge: is the maximum
edge density 1

2 + o(1) here?

17. (Dhruv Mubayi.) Motivated by Conjecture 3, consider the following hy-
pergraphs. Let k ∈ N, and s, t ∈ [2, k]. Let F ks,t be the hypergraph whose

vertex set is S ∪ T , where S ∩ T = ∅, |S| = s, |T | = t, and F ks,t con-
sists of all edges containing S and all edges containing T . Notice that
F k2,k−1 = Kk

k+1.

Problem 25 Determine the rate of growth of 1 − π(F ki,k−1) as k → ∞
and i = i(k). In particular, is π(F kk−1,k−1) = 1−Θ( log k

k )?

18. (Dhruv Mubayi and Jacques Verstraëte.) Is there a 5-uniform hypergraph
F such that for some c > 0 and all large n we have

n3+c ≤ ex(n, F ) ≤ n4−c?

Note that we forbid only one 5-graph (not a family). Also, Mubayi and
Verstraëte (unpublished) can show that ni+c ≤ ex(n, F ) ≤ ni+1−c is im-
possible for i = 0, 1, 2 (for a 5-graph F ).
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[CE87] F. R. K. Chung and P. Erdős. On unavoidable hypergraphs. J.
Graph Theory, 11:251–263, 1987.

[CG98] F. Chung and R. L. Graham. Erdős on Graphs: His Legacy of Un-
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[Erd64] P. Erdős. On extremal problems of graphs and generalized graphs.
Israel J. Math., 2:183–190, 1964.
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[Erd81] P. Erdős. Solved and unsolved problems in combinatorics and com-
binatorial number theory. Congres. Numer., 32:49–62, 1981.
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[GRS99] D. S. Gunderson, V. Rödl, and A. Sidorenko. Extremal problems for
sets forming Boolean algebras and complete partite hypergraphs. J.
Combin. Theory (A), 88:342–367, 1999.

[JT10] J. R. Johnson and J. Talbot. Vertex Turán problems in the hyper-
cube. J. Combin. Theory (A), 117:454–465, 2010.

[Kal85] G. Kalai. A new approach to Turán’s problem. Graphs Combin.,
1:107–109, 1985.

[Kee05] P. Keevash. The Turán problem for hypergraphs on fixed size. Elec-
tronic J. Combin., 12:6pp, 2005.

[Kee11] P. Keevash. Hypergraph Turán problem. Preprint, 2011.

[KKM02] N. H. Katz, E. Krop, and M. Maggioni. Remarks on the box problem.
Math. Res. Lett., 9:515–519, 2002.

[KM04] P. Keevash and D. Mubayi. Stability results for cancellative hyper-
graphs. J. Combin. Theory (B), 92:163–175, 2004.

[Kos82] A. V. Kostochka. A lower bound for the Hadwiger number of a graph
as a function of the average degree and its vertices (in Russian).
Diskret. Analiz. Novosibirsk, 38:37–58, 1982.

[KS05] P. Keevash and B. Sudakov. On a hypergraph Turán problem of
Frankl. Combinatorica, 25:673–706, 2005.

[LZ09] L. Lu and Y. Zhao. An exact result for hypergraphs and upper
bounds for the Turán density of Kr

r+1. SIAM J. Discr. Math.,
23:1324–1334, 2009.

15



[MP08] D. Mubayi and O. Pikhurko. Constructions of non-principal fami-
lies in extremal hypergraph theory. Discrete Math., 308:4430–4434.,
2008.
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[PV09] O. Pikhurko and J. Verstraëte. The maximum size of hypergraphs
without generalized 4-cycle. J. Combin. Theory (A), 116:637–649,
2009.

[Raz10a] A. Razborov. On 3-hypergraphs with forbidden 4-vertex configura-
tions. SIAM J. Discr. Math., 24:946–963, 2010.

[Raz10b] A. Razborov. On the Fon-der-Flaass interpretation of extremal ex-
amples for Turán’s (3, 4)-problem. Manuscript, 2010.
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16



[Sid95] A. Sidorenko. What we know and what we do not know about Turán
numbers. Graphs Combin., 11:179–199, 1995.

[SS01] M. Simonovits and V. Sós. Ramsey-Turán theory. Discrete Math.,
229:293–340, 2001.
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